加入收藏
免费注册
用户登陆
首页
展示
供求
职场
技术
智造
职业
活动
视点
品牌
镨社区
今天是:2025年5月3日 星期六 您现在位于:
首页
→
产通直播
→ STEAM(学术科研)
北京理工大学在二维半导体热电子掺杂方面取得重要进展
2021/9/7 7:47:05
【产通社,9月7日讯】北京理工大学(Beijing Institute of Technology, BIT)官网消息,其学物理学院张向东教授课题组青年教师陈宇辉研究员与新西兰维多利亚惠灵顿大学、奥塔哥大学,以及北京大学和西湖大学的研究者开展合作,在表面等离子体光学腔和二维半导体二硫化钨的复合体系上,通过利用光和物质强耦合效应,在实验上实现了对二硫化钨的高效热电子掺杂,大幅改变了二硫化钨原有的带隙,相关研究成果发表在国际顶级期刊《自然·通讯》上。
能带理论是半导体技术的重要基础之一,对能带的精细调控引发了许许多多的技术革命,其中不仅包括了二极管,三极管,大规模集成电路和激光器等尖端科技,还包括太阳能电池,CCD等和我们日常生活息息相关的应用。因此,开发各种新手段去实现更为有效的带隙调节一直都是半导体研究的重点。
传统上,我们可以通过化学掺杂,施加电压,或者是光学泵浦的方法来改变半导体内的电荷环境,从而实现带隙的改变。我们在最近的研究工作中发现,如果把二维半导体二硫化钨放到纳米尺度的表面等离子体光学谐振腔内,可以实现光和物质的强耦合效应,从而形成一种一半光一半物质的杂化状态(hybrid state of half-light and half-matter)。当体系处在这样一种杂化状态时,能量会在二硫化钨和表面等离激元腔中来回多次地发生相干转移,因而体系会同时具有半导体和光学腔的物理特性。而每当杂化态的能量以表面等离激元的形式存在时,金属中的自由电子都会被等离激元激发到更高的能量,从而形成了我们所说的热电子。这些热电子具有很高的的能量,可以越过势垒,注入到二维半导体中,从而导致二硫化钨的能带结构发生重整化。在这一过程中,无论是热电子在金属材料中的产生,还是热电子对半导体的注入,都是伴随着能量在表面等离激元和二硫化钨的相干转移过程中发生的,我们因而把这样一个掺杂过程称为相干掺杂过程。
基于这样的技术思想,我们利用自组装的方法制备了二氧化硅光子晶体,通过在其表面蒸镀银金属薄膜,制备出表面等离子光子晶体腔;然后再将二维半导体二硫化钨转移到光子晶体表面。进一步地,在室温条件下,使用中心波长为400nm、功率为12μJ/cm2的飞秒脉冲激发,我们观测到了二硫化钨带隙移动了550meV。相比于传统的光学泵浦方式,掺杂效果得到了两个数量级的增强(以往的实验需要在3400μJ/cm2的条件下才能观测到类似的带隙重整化[Nat. Photonics 9, 466–470 (2015)])。
查询进一步信息,请访问官方网站
http://www.bit.edu.cn
,以及
http://www.nature.com/articles/s41467-021-24667-8
。(张嘉汐,产通发布) 
(完)
→
『关闭窗口』
-----
[
→ 我要发表
]
上篇文章:
成都天奥电子2021上半年申请发明专利2项
下篇文章:
江苏太平洋石英股份有限公司2021上半年营收增长42.6…
→
评论内容
(点击查看)
(没有相关评论)
您是否还没有
注册
或还没有
登陆
本站?!
分类浏览
|
官网评测
>|
官网
社区
APP
|
STEAM
>|
学术科研
产品艺术
技术规范
前沿学者
|
半导体器件
>|
产品通报
企业动态
VIP追踪
|
电子元件
>|
产品通报
企业动态
VIP追踪
|
消费电子
>|
产品通报
企业动态
VIP追踪
|
商业设备
>|
产品通报
企业动态
VIP追踪
|
电机电气
>|
产品通报
企业动态
VIP追踪
|
电子材料
>|
产品通报
企业动态
VIP追踪
|
电子测量
>|
产品通报
企业动态
VIP追踪
|
电子制造
>|
产品通报
企业动态
VIP追踪
|
应用案例
>|
家庭电子
移动电子
办公电子
通信网络
交通工具
工业电子
安全电子
医疗电子
智能电网
固态照明
|
工业控制
>|
产品通报
企业动态
VIP追踪
|
通信电子
>|
产品通报
企业动态
VIP追踪
|
交通工具
>|
产品通报
企业动态
VIP追踪
|
基础工业
>|
产品通报
企业动态
VIP追踪
|
农业科技
>|
产品通报
企业动态
专家追踪
|
信息服务
>|
企业动态
|
光电子
>|
企业动态
关于我们
┋
免责声明
┋
产品与服务
┋
联系我们
┋
About 365PR
┋
Join 365PR
Copyright @ 2005-2008 365pr.net Ltd. All Rights Reserved. 深圳市产通互联网有限公司 版权所有
E-mail:postmaster@365pr.net
不良信息举报
备案号:
粤ICP备06070889号