加入收藏
 免费注册
 用户登陆
首页 展示 供求 职场 技术 智造 职业 活动 视点 品牌 镨社区
今天是:2024年5月19日 星期日   您现在位于: 首页 →  产通视点 → 创新科技(半导体技术)
SEMI公布半导体、FPD及MEMS制造领域8项新标准
2007年10月29日  SEMI China  

SEMI日前公布了8项半导体、FPD及MEMS制造行业的新标准。新标准由来自设备与材料供应商、器件制造商以及其他加入SEMI国际标准计划的公司中的技术专家拟定而成,这些标准除可购买CD-ROM光盘外,还可以在SEMI网站www.semi.org下载。

SEMI每年公布三次SEMI Standard,在过去的34年里发布的标准数已超过770项。

SEMI国际标准部门主管Bettina Weiss表示,本次公布的8项标准中包括两项MEMS领域标准,今年春天也公布过三项MEMS标准。随着MEMS行业的发展及技术需求更加明朗化,相关行业标准的制定也日益重要。

8项SEMI Standards包括:

SEMI C62
Guideline for Porogen Precursors Used in Low K CVD Processes(低K CVD工艺用多孔前驱体标准)

SEMI C63
Guideline for Organosilicate Precursors Used in Low K CVD Processes(低K CVD工艺用金属有机前驱体标准)

SEMI E54.20
Standard for Sensor/Actuator Network Communications for EtherCAT(EtherCAT传感器/施动器网络通信标准)

SEMI E150
Guide for Equipment Training Best Practices(设备培训最佳方案)

SEMI F104
Particle Test Method Guidelines for Evaluation of Components Used In
Ultrapure Water and Liquid Chemical Distribution Systems(超纯水及液体化学试剂组分评估颗粒检测方法)

SEMI F105
Guide for Metallic Material Compatibility in Gas Distribution Systems(供气系统金属材料相容性)

SEMI MS4
Standard Test Method for Young’s Modulus Measurements(杨氏模量的测量方法)

SEMI MS5
Test Method to Determine Strength of Wafer-Wafer Bonds(晶圆键合决定力度测试方法)


SEMI PUBLISHES EIGHT NEW TECHNICAL STANDARDS

Documents Include Two MEMS Manufacturing Standards

SAN JOSE, Calif. – October 15, 2007 – SEMI has published eight newtechnical standards applicable to the semiconductor, flat panel display(FPD) and MEMS manufacturing industries. The new standards, developed by technical experts from equipment and materials suppliers, device manufacturers and other companies participating in the SEMI International Standards Program, are available for purchase in CD-ROM format or can be downloaded from the SEMI website, www.semi.org.

SEMI Standards are published three times a year. The new standards, part of the November 2007 publication cycle, join more than 770 standards that have been published by SEMI during the past 34 years.

“These new SEMI Standards include two MEMS related documents, joining three other MEMS standards that have been available since Spring 2007,” said Bettina Weiss, SEMI director of International Standards. “As the MEMS industry grows and technical requirements become clearer, it is important for suppliers and MEMS producers to collaborate in developing these important documents.”

The standards released today include guidelines for precursors used in low-K CVD processes, a guide for equipment training best practices, and a test method to determine the strength of wafer-wafer bonds.

The full list of SEMI Standards released today include:

SEMI C62
Guideline for Porogen Precursors Used in Low K CVD Processes

SEMI C63
Guideline for Organosilicate Precursors Used in Low K CVD Processes

SEMI E54.20
Standard for Sensor/Actuator Network Communications for EtherCAT

SEMI E150
Guide for Equipment Training Best Practices

SEMI F104
Particle Test Method Guidelines for Evaluation of Components Used In
Ultrapure Water and Liquid Chemical Distribution Systems

SEMI F105
Guide for Metallic Material Compatibility in Gas Distribution Systems

SEMI MS4
Standard Test Method for Young’s Modulus Measurements

SEMI MS5
Test Method to Determine Strength of Wafer-Wafer Bonds

The SEMI Standards Program, established in 1973, covers all aspects of semiconductor process equipment and materials, from wafer manufacturing to test, assembly and packaging, in addition to the manufacture of flat panel displays and micro-electromechanical systems (MEMS). About 1,100 volunteers worldwide participate in the program, which is made up of 17 global technical committees. Visit www.semi.org/standards for further details

about SEMI Standards.

SEMI is a global industry association serving companies that provide equipment, materials and services used to manufacture semiconductors, displays, nano-scaled structures, micro-electromechanical systems (MEMS) and related technologies. SEMI maintains offices in Austin, Beijing, Brussels, Hsinchu, Moscow, San Jose (Calif.), Seoul, Shanghai, Singapore, Tokyo and Washington, D.C. For more information, visit www.semi.org.

ASSOCIATION CONTACTS:
Bettina Weiss/SEMI                     Scott Smith/SEMI
Tel: 1.408.943.6998                    Tel: 1.408.943.7957
E-mail: bweiss@semi.org                E-mail: smith@semi.org


(Editor's  Note:  Following is more detailed information about the new SEMI standards).

SEMI C62

Guideline for Porogen Precursors Used in Low K CVD Processes

SEMI C62 provides consistent quality guidelines for porogen precursors that will minimize the risk of supplying inconsistent material to the industry. Inconsistent material between various suppliers impacts the end user process which could result in increased costs for material re-qualification and contamination to equipment.
 
The implementation of these quality guidelines for the semiconductor industry will ensure consistent supply between various precursor suppliers. This is valuable to the industry because it offers end users multiple supply options that provide comparable material quality, minimizing the costs associated with material qualifications.

SEMI C63

Guideline for Organosilicate Precursors Used in Low K CVD Processes SEMI C63 provides consistent quality guidelines for organosilicate precursors that will minimize the risk of supplying inconsistent material to the industry.  As with SEMI C62, inconsistent materials may impact the end user process which can increase the cost of material re-qualification and contamination to equipment.

SEMI E54.20

Standard for Sensor/Actuator Network Communications for EtherCAT

EtherCAT is a high speed, low cost Ethernet based Sensor/Actuator Network suitable for any kind of tool control, material handling, data acquisition or measurement application. EtherCAT breaks performance and topology barriers imposed by legacy field bus systems, while supporting their seamless integration into the system if desired.

Due to its functional principle called “processing on the fly”, it utilizes the Ethernet bandwidth in such a way that it is 50-100 times faster than many fieldbus systems. Up to 65,535 nodes can be connected in each segment using line, ring, star or tree topology, or any combination hereof.

EtherCAT provides the means to combine measurement, motion control, safety and I/O networks into one system, while supporting simplified vertical integration. As well as being a SEMI and IEC standard, EtherCAT is on its way to become the de-facto standard for the semiconductor, FPD and MEMs industries, supported by large OEMs and device vendors in North America, Asia and Europe.

SEMI E150

Guide for Equipment Training Best Practices

SEMI E150 supports all manufacturing processes by recommending best training practices for improving the performance of the industry workforce. It is recognized that effective training practices can improve the equipment purchaser’s ability to install, use, maintain, and repair equipment resulting in higher productivity, increased equipment uptime, reduced costs, and improved safety. The intent of this guideline is to facilitate the gap between awareness of performance-based equipment training and realizing its benefits through practice.

If the process and characteristics of performance-based equipment training described in this standard are implemented, more effective training will result. These guidelines are not unique to the semiconductor industry. Rather, they represent best practices within the performance improvement profession as represented by the American Society of Training and Development (ASTD) and the International Society for Performance Improvement (ISPI).

The value of the E150 guide to the semiconductor manufacturing industry is to increase accessibility to this type of training information, thus enabling better performance throughout the industry.

SEMI F104

Particle  Test  Method  Guidelines  for  Evaluation  of  Components Used In Ultrapure Water and Liquid Chemical Distribution Systems

SEMI  F104  applies to any manufacturing process requiring liquid chemicals that either remain as liquid for process or are used as precursors.

Chemical purity standards are getting more and more stringent every year. By using this test method and particle specification (to be introduced at a later date), chemical distribution manufacturers will be able to select fluid handling components that contribute the least amount of particles to the chemical stream during use. This combined with higher purity chemicals allows manufacturers to meet higher purity demands.

New fluid handling components installed in systems introduce contaminants into the fluid stream in the early stages of use. Therefore, liquid distribution systems are usually run for a significant amount of time before being used in actual process conditions. By using the best performing components found through particle testing, startup time is reduced, and costs associated with running the system are reduced as well.

In the past, liquid distribution system manufacturers did not test components for particle cleanliness, and if they did, it was on a haphazard basis with no performance criteria for qualification.  With this standard, manufacturers can verify component performance at test agencies by referring to this test method. Customers now can generate performance comparisons to ensure that their systems contribute the least amount of contaminants as possible to process chemicals.  Also, customers can continually monitor the particle performance of vendors’ liquid components by particle testing on a regular basis.

SEMI F105

Guide for Metallic Material Compatibility in Gas Distribution Systems

SEMI  F105  relates  to  any semiconductor wafer process step that requires equipment  with  a  chemical  delivery system, including PVD, CVD, and Etch systems.

Previously, chemical compatibility was only defined for 316 stainless steel.  Many other metallic materials are being used in chemical delivery systems but their compatibility with the gases has never been documented. This document will help reduce contamination due to chemical incompatibilities which can lead to wafer defects and yield loss.  It will also provide the opportunity for more cost effective materials to be used in certain applications, thus lowering the overall cost of the system. This standard is applicable to any semiconductor device or equipment manufacturer, or component supplier working with chemical delivery systems.

SEMI MS4

Standard Test Method for Young’s Modulus Measurements

The SEMI MS4 applies to the MEMs manufacturing process, specifically material property quality testing. It provides a uniform test method where none or not many were available before. The adoption of MS4 reduces manufacturing cost because it helps improve quality control and increases reliability of MEMS products.

SEMI MS5

Test Method to Determine Strength of Wafer-Wafer Bonds

SEMI MS5 is a variation of MS4, with both standards applying to the MEMs manufacturing process, specifically material property quality testing. MS5 also provides a uniform test method where none or not many were available before. MS5 increases the reliability of MEMS product.  In particular, it is applicable and useful to the automotive, navigational, and medical devices.

    
→ 『关闭窗口』
 dav
 [ → 我要发表 ]
上篇文章:信产部(MII):京东方、上广电与龙腾光电的整合正在…
下篇文章:DRAM现货价跌破1美元 台湾DRAM厂商预计亏损百亿…
  → 评论内容 (点击查看)
您是否还没有 注册 或还没有 登陆 本站?!
 分类浏览
创新科技>| 人工智能  信息科学  通信技术  光电子学  材料科技  能源科技  先进制造  半导体技术 
行业观察>| 行业动态  市场分析 
家庭电子>| 市场观察  厂商动态  技术趋势 
移动电子>| 市场观察  厂商动态  技术趋势 
办公电子>| 市场观察  厂商动态  技术趋势 
汽车电子>| 市场观察  厂商动态  技术趋势 
通信网络>| 市场观察  厂商动态  技术趋势 
工业电子>| 市场观察  厂商动态  技术趋势 
安全电子>| 市场观察  厂商动态  技术趋势 
工业材料>| 市场观察  厂商动态  技术趋势 
固态照明>| 市场观察  厂商动态  技术趋势 
智能电网>| 市场观察  厂商动态  技术趋势 
关于我们 ┋ 免责声明 ┋ 产品与服务 ┋ 联系我们 ┋ About 365PR ┋ Join 365PR
Copyright @ 2005-2008 365pr.net Ltd. All Rights Reserved. 深圳市产通互联网有限公司 版权所有
E-mail:postmaster@365pr.net 不良信息举报 备案号:粤ICP备06070889号